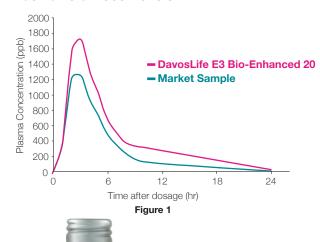
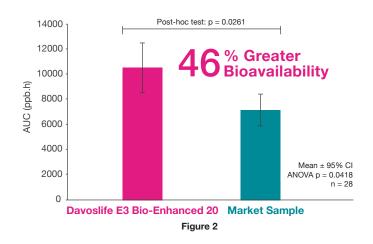


Get The Most Out of Tocotrienols with DavosLife E3 Bio-Enhanced 20

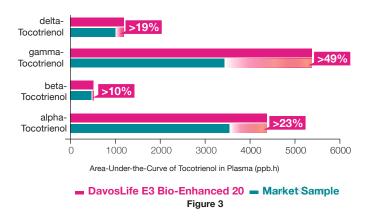

DavosLife E3 Bio-Enhanced 20 is a patented self-emulsifying vitamin delivery system. This formulation contains the complete spectrum of Tocotrienols with α -Tocopherol and offers 46% higher bioavailability compared to a market sample. A higher bioavailability leads to a higher concentration of Vitamin E in the body, maximising the benefits of neutralising free radicals and reducing chronic inflammation. Tocotrienols are up to 60 times stronger in antioxidant activity compared to α -Tocopherol with unique anti-inflammatory properties.

Clinically Proven Enhanced Absorption


Davos Life Science commissioned an opened-label, randomised, 4-way cross-over clinical study to compare the bioavailability of DavosLife E3 Bio-Enhanced 20 with a market sample. This study was conducted on 28 healthy volunteers with a dosage of 200 mg Tocotrienols. DavosLife E3 Bio-Enhanced 20 delivers a higher concentration of Tocotrienols (Cmax) to plasma compared to the market sample at the same time point (Figure 1).

Plasma Total Tocotrienols

For medical professional use



The Area Under the Curve (AUC) of Figure 1 represents the overall exposure of the body to Tocotrienols over time. DavosLife E3 Bio-Enhanced 20 has the greater AUC compared to the market sample and therefore the higher bioavailability between the two (Figure 2).

More Individual Isomers Delivered to Plasma

Higher concentrations of each individual Tocotrienols isomer is delivered to plasma compared to the market sample (Figure 3).

Tocotrienols, The Extraordinary Vitamin E

Vitamin E is not just a single molecule, but a family of eight fat-soluble substances that are sub-divided into two classes of structurally-similar molecules. These two classes are tocopherol and tocotrienol, each of which have four structurally and chemically diverse molecules termed as alpha (α), beta (β), delta (δ), and gamma (γ) respectively.

Tocotrienols have up to **60X** more antioxidative potency compared to α-Tocopherol, and have unique anti-inflammatory properties not seen in α-Tocopherol¹.

TOCOTRIENOLS

Tocotrienols have unsaturated isoprenoid side chains with three double bonds. This unique property gives it better flexibility with a higher efficiency of penetrating into the cell membrane. Tocotrienols are potent ANTIOXIDANTS* with unique ANTI-INFLAMMATORY properties.

 α : R' = CH₃, R" = CH₃ β : R' = CH₃, R" = H γ : R' = H, R" = CH₃ $\delta: R' = H, R'' = H$

TOCOPHEROLS

Tocopherols, in contrast, have saturated side chains. They also function as antioxidants, but this chemical structure gives them a lower antioxidative capacity as compared to tocotrienols.

 $\alpha: R' = CH_3, R'' = CH_3$ β : R' = CH₃, R' = H $\gamma : R' = H, R'' = CH$ $\delta : R' = H, R'' = H$

Tocotrienols have Unique Properties that Positively **Impact Different Areas of the Body**

Tocotrienols are naturally sourced from plant species like oil palm, rice and Annatto seed.

Each analogue of tocotrienol are functionally unique, with α -, β -, δ -, and γ -tocotrienol each exerting different beneficial effects on health and disease that are separate from the biological functions of a-tocopherol.

NF-κβ STAT3 Translocation Translocation Cell Nucleus NF-kß Cytosol nflammation Gen

Potent Anti-Inflammatory

Agent

Tocotrienols

Tocotrienols have pronounced and potent effects on NF-kB (key master regulator of inflammation) STAT3 (master inflammatory transcriptional factor) to reduce inflammation^{2,3,4}.

Inflammation Modulators

E., Kagan, V., Han, D., and Packer, L. (1991). Free radical recycling and int properties of alpha-to-copherol and alpha-to-cotrienol. Free Radical Biolo-(2015). Am J Trans Res.²(%). 1621-1620 1/2). Food Chemistry, 134: 920–925 al. (2010). Biochem Pharmacol., 30(11): 1613–1631

For more information, contact us at